Thursday, March 26, 2015

Swancon - final panel list

Yes, Swancon 40 is almost here and after a little bit of rearrangement to avoid panel members cloning themselves or threatening causality, here's my final panel rundown. I'm very excited to be attending my very first Swancon and looking forward to talking about a whole range of topics that really interest me.

Terrors of the Second Draft Friday 15:00 until Friday 16:00
Participants: Amanda Bridgeman, Russell B Farr, Donna Maree Hanson, Keith Stevenson

MODERATOR: RUSSELL B FARR
A lot of aspiring novelists focus so intently on getting their first draft compete that they never pause to consider what comes next: the rewrite. For some it’s a brilliant opportunity, for others an unwanted task filled with reluctance and dread. What is the best way to go about rewriting your fiction once you’ve completed it? What are the best tricks, techniques and tips to take your work from good to brilliant? What are the traps and pitfalls to avoid? A panel of professional writers discuss their own creative process in refining their works for publication.

Ch.ch.ch.changes: SF&F as a transformative force upon Society Friday 17:00 until Friday 18:00
Participants: Louisa Loder, Cat Sparks, Keith Stevenson

“There is no place like home” Scifi takes us away from home. How has our world changed as a result of SF?

Crits and Grits - When Are Crit Groups A Good Idea? Saturday 17:00 until Saturday 18:00
Participants: Anthony Panegyres, Carol Ryles, Keith Stevenson, Helen Stubbs

Crit groups and writing groups are an important part of the business of writing. When do you need to find one? When you do, how do you handle hearing things you don’t want to hear? Will you ever be friends again? Do you ever NOT need a critgroup?

Loving The Borg: Transhumanism in the Real World. Sunday 12:00 until Sunday 13:00
Participants: Doug Burbidge, Dave Cake, Matt Holmes, Robert Hood, Cat Sparks, Keith Stevenson

MODERATOR: DOUG BURBIDGE
Humanity’s ultimate merging with the machine is a dream – or nightmare – depending on which Hollywood trope you subscribe to, but what would it really be like and how would it happen? With more and more smart wearables, where does transhumanism begin and end? Would a transhuman feel less human or more, and would they be the best judge of the change? Could they still love, hope, create if their conscious thoughts were reduced to a stream of ones and zeroes? Would they still feel tethered in the real world or lost in the infinite possibilities of virtual reality? Our panellists consider the many and varied ways that true transhumanism will change us forever.


More than just extra Umlauts: Names and naming conventions in SF/F Sunday 17:00 until Sunday 18:00
Participants: Shona Husk, Keith Stevenson, Tehani Wessely, Frames White

MODERATOR: FRAMES WHITE
How do we come up with our naming and language themes? We have serious amounts of work going into creating good name / language structures. eg themed names, linguistic structures

Climate Change - is it Affecting our Spec Fic? Monday 12:00 until Monday 13:00 (60 Minutes)
Participants: Glenda Larke, Cat Sparks, Keith Stevenson


There’s a strand of SF that likes to consider our ultimate demise. In the middle of the last century that was likely to be through nuclear conflagration. Nowadays it’s climate change disaster. But portraying the antagonist as an elemental force rather than a ‘bunch of nuke-crazy Reds’ brings its own challenges from a writing perspective. How have writers tackled these very real fears over the past decade or so, and is there still room for a happy ending?

Thursday, January 8, 2015

Horizon: the real life PALs

In Horizon, each of the stellarnauts have their own PAL, a ball-shaped personal assistant that hovers in the zero G environment using small fans and allows the stellarnauts to talk to each other via video and audio link as well as acting as a recorder.

It's a cool concept and, like pretty much everything in the novel, it's based on actual scientific development.

In 2006, DARPA and NASA began developing football sized SPHERES (Synchronized Position Hold Engage Re-Orient Experimental Satellites), which were upgraded in 2013 to be controlled by a smartphone on the ISS.

The latest news is that, like the PALs, they will soon be capable of autonomous movement following the installation of a wi-fi network on the ISS. Each SPHERES robot is powered by 16 AA batteries and moves using jets of compressed CO2.

Thursday, January 1, 2015

2015: continuing The Lenticular, expanding Horizon, consolidating Dimension6

Everyone seems to be getting oriented towards the new year as we take stock of achievements in 2014, recharge our batteries and think about what comes next.

Certainly for me the key piece of work will be honing the second draft of book two of The Lenticular series, and plotting out book three. I'm really looking forward to building on the bones of what I have already and I've invested in Scrivener to help me do that. Usually I'm a pen and paper man, so it will be interesting to see how this software changes the way I work.

The other thing that I'll be working on is a new and expanded version of Horizon. Yes, I know, Horizon is already out there but I like the idea of reworking things. No piece of writing is ever truly finished and musicians certainly have no problem revisiting and reinterpreting their own work, so why not authors?

There's a couple of things that have got me thinking about this. The core of Horizon was actually written around 2005, now a whole ten years ago! As a first novel it was a feat just to get all the characters meshing together and the plot working. Time moves on and the core would be very different if I wrote it today. The other thing that's got me thinking is some of the reviews that Horizon has received. While the reception has been on the whole positive - you can't please everyone - there's been some consistent comments coming through about wanting to experience more about what is occuring on Earth, and also to get into the heads of some of the other characters, in particular my transhuman, Bren. I'm excited by the possibilities and challenges that presents me as a writer. And I think Scrivener will be a help here too. The other thing in the back of my mind is that while Horizon was sold as a digital book, with an option for a print version down the track, I don't really expect a print version will be produced by HarperCollins because I don't think sales will be that strong. However, print rights revert to me in 2016, which presents me with an opportunity to publish a print version of Horizon, but one that is significantly expanded and maybe - who knows - with a whole new ending.

My final focus for 2015 will be working to consolidate Dimension6. I'm committed to making this magazine part of the Australian speculative scene for years to come. That's a lot of work, but it also has it's rewards. For example my last round of reading brought quite a few really good stories to the top of the pile, some from writers I hadn't heard of before. That's really exciting and I'm looking forward to sharing their unique voices and talents with you in the coming months. I'm still waiting on signed contracts from a number of authors but I can reveal a partial line-up at least for 2015.

Dimension6 issue 4 (27 March 2015)
'Dark History' by Jen White

Dimension6 issue 5 (3 July 2015)
'The Pass' by Jessica May Lin
'Red in Tooth and Claw'  by David McDonald

Dimension6 issue 6 (2 October 2015)
'Lodloc and the Bear' by Steve Cameron


Wednesday, December 17, 2014

Horizon - life in the extreme

This post originally appeared on Greig Beck's Facebook page as part of the Horizon blog tour.


It’s a thrill to be visiting Greig’s page, because I’ve been a fan since reading Beneath the Dark Ice, the very first Alex Hunter novel. So I thought I’d write about something that is close to Greig’s heart and which he’s explored in his own work: the topic of extremophile life.

Whether it’s giant monsters living beneath the Antarctic ice, creatures from another dimension or bacteria living far below the South American jungle, it seems life can be found everywhere. Recent reports from the International Space Station have even found sea plankton living quite happily on the outside of the station’s windows.

While Earth today is mostly benign to life, there have been a number of mass extinction events, most famously the meteor strike 65 million years ago that supposedly ended the reign of the dinosaurs.

When I was creating the planet Horizon, the target for my stellarnaut explorers, I imagined what life might be like there, what extinction events might have occurred and how life might have survived. Certainly on Earth, the two key necessities of life are liquid water and oxygen. And you can add heat to that mix if there’s an ice age scenario: the most common cause of mass extinctions.

Without giving too much away, there is life on Horizon, but it’s very hard to find because it became imprisoned within a relatively small part of the planet’s biosphere during an ice age that almost turned the planet into a giant snowball. Even aquatic life wasn’t immune to the severity of the cold that gripped the world, and it was forced to seek what warmth it could around ‘black smokers’.

These hydrothermal vents exist on Earth’s ocean floor as well. The deepest yet discovered is five kilometres below the surface of the Caribbean Sea. Life at that depth is very sparse due to the darkness, cold and pressure, but the vents, which are large chimneys sitting astride underwater volcanic rifts, provide a haven for creatures that have become uniquely adapted to the extreme conditions there. Some bacterium have been found near black smokers living in blistering temperatures of 121 degrees C.

Unfortunately these environments are sometimes lacking in oxygen, as the vents pump out large volumes of sulphides. But life can exist even without oxygen it seems. In the North American Great Lakes, scientists have found cyanobacteria that derive energy by photosynthesising sulphur instead of oxygen, and other such bacterial communities have been found around hydrothermal vents.

The mystery creatures on Horizon survive through a symbiotic relationship:
‘Imagine one small group of sea-going creatures seeking to escape the cold and taking up residence around the vents of an underground volcano. Pickings are slight down there, and what oxygen is available is badly tainted with smoker gases. The survivors are looking at slow, inevitable extinction. That is until something wonderful happens. Something totally unexpected. A symbiotic relationship is struck up between an extremophile microbe of the deep ocean and some of the surviving creatures, which allows them, through progressive generational mutations, to derive energy directly from a new source — the hydrogen sulphide cycle.’ 
Of course, what those creatures are, how they survive and what that means for the mission, I can’t reveal. But their existence has repercussions not only for the crew of my explorer ship, but for the rest of humanity back on Earth.

Tuesday, December 16, 2014

Horizon - planet-building

This post originally appeared on Sean Wright's blog as part of the Horizon blog tour.


Horizon is my debut science fiction novel published by HarperVoyager Impulse. It’s an SF thriller centred on a deep space exploration mission that goes very wrong, with repercussions for the future of all life on Earth.

While the main focus of the story is the tense drama that plays out between the crew in the cramped confines of the ship, a lot of the grunt work in good science fiction goes into imagining the worlds that space travellers visit. The way I see it, there are four key elements in creating a believable world to serve the needs of the story:
  • spatial location 
  • physical attributes 
  • geological past, and 
  • current environment. 
To make sure my crew is sufficiently isolated from the rest of humanity — and cut off from any possible outside help — I needed a star that was quite a distance away. Iota Persei is a main sequence dwarf star 34.4 light years from Earth. The sun is slightly bigger than our own. Although no planets have been detected around it so far, that could change. Planetary discovery is a ‘boom industry’ at present, with the Kepler telescope alone responsible for discovering 978 confirmed planets and over 4,000 potential candidates in the five years since it launched.

Because my target planet Horizon is Earth-like, I imagined a ‘typical’ system with seven planets, including Iota Persei F, a gas giant twice the size of Jupiter, which the ship briefly orbits. Here’s a description of that close meeting:
Space closed in all around, stars piercing the darkness as the leviathan to port threatened to swamp her senses. It seemed much too close.
Microlasers tracked eye movement and the helmet induced a slew of orbital data directly onto her optic nerve, overlaying the information on the roiling clouds of Iota Persei F. She blinked it away, preferring to focus on the swiftly moving bands of cloud, watching tendrils weave and curl around each other where they met, like smoke from an incense stick. The colours were striking: emerald greens, oranges, electric blues, all interspersed with fingers of white. Nothing like this existed in their backwater solar system: twice as big as Jupiter and far more garish.
An ominous purple eye hoved into sight, a gigantic anticyclone standing proud of the surrounding cloud deck. It stirred up the bands where they touched, shredding them, sucking them into its vortex and scattering them back along its path to slowly reassemble and await the approach of the next storm. 
The main prize in the system is the planet Horizon or, more correctly, Iota Persei B, which is second from the sun. As I wanted Horizon to be Earth-like, it had to possess similar physical properties to Earth, so it’s approximately Earth-sized. From that follows similar gravity and air pressure. It also meant positioning the planet in the ‘goldilocks zone’ — where it’s not too hot, not too cold, but j-u-u-u-st right — so it has suitable surface temperature variations as well. And like Earth — and indeed any other planet — Horizon also needed a geological history, a history that is written across the face it presents to the world:
Day was dawning over a wide, undulating plain. Purples, pinks and golds shifted across the sky and seemed to ripple in reflected glory across the land. The effect lasted only an instant and then the sun broke over the horizon, a diamond flash that arced across the sky, banishing the last of the shadow to reveal a desolate kind of beauty that stole Cait’s breath away. Even from a cruising altitude of one hundred metres, she could see that the ground was covered in a white aggregate, no doubt the source of the colourful dawn reflections. Spindly grasses pushed their way through the landscape, but apart from that the view was uninterrupted all the way to far-off low, rolling hills. The bot executed a turn and a river came into view, snaking into the middle distance. Its banks were covered with lush vegetation, which quickly gave way to sparse grasslands again. 
In its far prehistory, Horizon was subject to massive glaciation — far more than Earth. In fact there was a point where the surface was all but entirely covered by a thick mantle of ice: a snowball planet. That type of pressure, and the abrading force of the glaciers, created undulating plains out of the previously thrusting mountain peaks, which are now scattered across the land as aggregate. The sparse plant life is another clue to the effects of that glaciation, with only the hardiest plants surviving the ice age and perhaps only now beginning to reassert their presence on the landscape. It’s an important element of the story that planetary environments are subject to massive change on a geological timescale, and what appears Earth-like (even our own Earth) was not necessarily as supportive of life in the past, and may indeed change again in the future through natural processes. Which brings us to climate, and as Magellan arrives, Horizon is certainly feeling the effects of a massive weather event:
He tapped the controls and the bot’s-eye view on the screen rolled as it dropped towards the storm.
‘There’s a lot of water vapour up here,’ Nadira said, almost to herself.
And then the bot entered the central column of the hypercane, accompanied by an eldritch flash that almost swamped the photosensors. Inside was darkness strobed with lightning that picked out patches of purple and green among the greys of the surrounding eye wall. Cait imagined how deafening the storm must be, even in the relative calm of its centre. 
Placement, properties, history and current environment: shorthand for building a dynamic, changing world. One where the crew of Magellan are faced with a whole raft of problems.

Sunday, December 14, 2014

Horizon - Inside a Transhuman

This post originally appeared on Alan Baxter's blog as part of the Horizon blog tour.

One of the most interesting themes in science fiction, and one of the most exciting advances happening in medical research today, is how humans will become augmented through interfacing with technology.

In the real world, there are amazing advances that enable paraplegics to control the environment around them. In 2012 in the UK, a woman had an aspirin-sized array of electrodes implanted in her brain which picked up signals from neurons in her motor cortex enabling her to control a robotic arm. In sci-fi movies, humans interfacing with technology has brought about a variety of dystopian scenarios from (the now somewhat laughable) Saturn 3, to (the now very laughable) Lawnmower Man, as well as the Matrix movies and the more recent Transcendance.

One of the best books about the future development of humanity is Damien Broderick’s The Last Mortal Generation. It explores not only how the life of our physical body can be extended, but also how technology might free the mind from its time-limited physical form. The mind is the key to so much — our emotions and sense of self. What would it be like to transplant your mind outside of its fleshy architecture into the elegant symmetry of a computer? Would you feel any different if your brain was replaced neuron by neuron by ‘silicon brain cells’? Would you lose your humanity? What about extending the reach of your mind resting within its physical confines by hooking it up to a wider cognitive network that’s faster, richer, and electronic?

In Horizon, Systems Specialist Bren Thurgood is among the first couple of generations of transhumans: people who accept an implant that allows them to interface with computerised and artificial intelligence systems. It makes her very good at what she does, and she’s an indispensable member of the crew. However even though I’m an optimist, I find it hard to imagine a future where humanity doesn’t attack what’s different in society. And given the current controversy about metadata and government snooping, I think the reasons behind a widespread mistrust of transhumans are compounded. They are ‘creatures of the internet’, able to breach firewalls and hack sensitive systems as easily as breathing. As a result, ‘chipheads’ are the target of racist — or maybe that should be ‘specist’ — intolerance from the ‘norms’.

 I think the most interesting aspect of interfacing directly with the electronic world, the world of data and numbers, is how our minds would interpret and present that augmented reality to us. We’re not digital, we’re analogue, which means — perhaps — we’ll take a figurative rather than literal approach to the datastream. Bren explains it best:

Lex pressed the patches to her temples and flicked the monitor into life. He picked up a metallic wand. ‘You shouldn’t feel any discomfort. I’m just going to send a range of harmonics through the soft tissue and see what the sensors pick up.’ He touched her chin and turned her head to the left. The wand hummed in his hand. ‘What’s it like anyway, the link?’

Bren snorted and a smile spread across her face. ‘You don’t know how many times I’ve been asked that.’

‘Then you should have a good answer.’

She turned towards him and he gently turned her head back into position. ‘A lot of people can’t get used to it. There’s the increased cognitive capacity, of course. You’re totally aware — of everything. When you’re linked, you can instantly understand concepts, complex equations, programming, the works. You access information, formulate solutions, in the blink of an eye. But the perception change can really get to you. Some things you encounter are actual representations, like when I saw Phillips in the ring. Some things you can template and construct yourself. But every now and then something will come at you that’s totally figurative.
Like the interface has tapped into your subconscious imagery and selected something that embodies completely what you’re experiencing intellectually, emotionally, and even spiritually. It can freak you out if you’re not used to it.’

‘Like that package ticking?’

‘Yeah, but that’s a simple example.’

‘Look to the right, please,’ Lex said and swapped the wand to his other hand.

‘Anyway, it’s helped me become more than I ever could be. But Harris and people like him will never understand. And they’ll never trust what they don’t understand.’ 

No matter how augmented they become, I believe transhumans will retain their own human and individual ways of looking at the world. It may have to work that way to prevent their brains from overloading. It’s a fascinating concept to think about, and it almost makes me wish all this was a reality right now.

Wednesday, December 10, 2014

Horizon - time travel, relatively speaking

This post originally appeared on Rjurik Davidson's blog as part of the Horizon blog tour.


Horizon is my debut science fiction novel published by HarperVoyager Impulse. It’s an SF thriller centred on a deep space exploration mission that goes very wrong, with repercussions for the future of all life on Earth.

While the main focus of the story is the tense drama that plays out between the crew in the cramped confines of their ship, the Magellan, a lot of the grunt work in good science fiction goes into imagining exactly how the ‘props’ that support the main action could actually function.

In my post Engage: Tinkering with a Quantum Drive on Joanne Anderton’s blog on 7 November, I talked about the theoretical drive that boosts the explorer ship to an appreciable fraction of the speed of light in order to reach the Iota Persei system in a reasonable time — i.e. before my ‘stellarnauts’ grow too old.

It was important for the story that the world of Horizon was far enough away from Earth for the crew to be entirely isolated from any direct interference — or chance of assistance — from their home planet. That’s why I chose the Iota Persei star system which is thirty-four light years from Earth.

To work out how long it would take Magellan to get there, I had to perform a number of mathematical equations. For someone who failed higher maths at school, it was a bit of a stretch and the results have a fair degree of fudge factor, including not accounting for the time taken for the ship to accelerate from rest, but I think they work well enough to support the story.

Firstly, how far is it to Iota Persei? Saying it’s thirty-four light years away really only means it takes a particle of light thirty-four years to get there. Light travels in a vacuum at a speed of 299,792,458 metres per second, commonly referred to as ‘c’. There are 31,536,000 seconds in a year, which means there are 1,072,224,000 seconds in 34 years (thanks, Excel!). That means the distance to Iota Persei is ‘c’ times the number of seconds in 34 years, which equals 321,444,668,486,592,000 metres, or a little over 321 trillion kilometres.

Secondly, how fast does the crew of Magellan need to travel to get there and not be geriatrics on arrival? The drive of the ship is (kind of) grounded in real world physics. I didn’t want to have a super-sci-fi hyperdrive or warp drive because the launch is only set about sixty to eighty years in the future. I felt that travelling at 0.6 ‘c’ was probably reasonable for technology of that time. Dividing the distance to Iota Persei by 0.6 ‘c’ equates to a travel time of 1,787,040,000 seconds or 56.6 years. Still quite a long time. A crew with an average age of thirty would be well into their eighties on arrival. But I had a couple of extra tools to apply to the problem: one due to relativity and the other, I’ll admit, is a bit of hand-wavy sci-fi.

Special relativity allows that a person who is moving experiences time differently to a person who is at rest. The faster the person travels, the slower time passes for them. This ‘time dilation’ can be worked out by using the Lorentz factor, which, for all you maths nerds out there, is 1 divided by the square root of 1 minus the square of the velocity of the ship over the square of ‘c’. For my crew, travelling at 0.6 ‘c’, the Lorentz factor is 1.25, which means the amount of time that passes on the ship during the journey is 56.6 years divided by 1.25, which is 45.3 years. A little better, but the crew would still be pushing seventy-five on arrival.

So I had to deploy a kind of suspended animation for my crew. Once they leave Earth, the crew enter harnesses, which protect them from the acceleration of the ship and also significantly slows their metabolism. The effect of this is to cut ageing by a factor of seven, so the 45.3 year trip only amounts to about 6.47 years of ageing, which is much better for the purposes of the story.

The thing about writing science-based science fiction is that it takes a lot of work in the background to justify a few words on the page. The explanation above took over five hundred words. Hopefully it’s interesting to read as a blog post, but would be dull as dishwater in a novel. Here’s what all that work ended up looking like in the finished novel:

She still had no idea how long they’d been in deepsleep, and Phillips wasn’t around to tell her. She looked closely at Bren, trying to detect any signs of ageing. The mission was scheduled to take fifty-five years, slightly more than forty-five years’ ship time. On average, deepsleep slowed physical processes by a factor of seven so the whole journey should see them age by a little over six years. Bren’s bleached buzzcut had grown out to a shoulder-length, mouse-brown cloche with a wistful frizz of blonde at the tips. But apart from that and her sickly condition, she looked pretty much the same. Hell, they might be no more than a couple of years out from Earth for all Cait knew.